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Abstract

A parameter perturbation technique is used to obtain asymptotic solutions that apply to a fast moving crack-tip,
where small damage condition prevails. The material can be described by an elastic—plastic—viscoplastic constitutive
relation including quasi-brittle damage. A dimensionless coefficient, which shows the characteristic damage within this
regime, is taken as a perturbation parameter. A set of asymptotic equations is derived in terms of a regular perturbation
expansion procedure. Asymptotic solutions are obtained for radial and angular variations of stresses and velocities with
first- and second-order accuracy. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The present paper investigates the local solution of the stress field of fast fracture in a regime with small
damage around the crack tip. Unlike the situation in the zone (Region A of Fig. 1) where the damage effect
plays a dominant role such that singular stresses do not occur at the crack tip (Lu et al., 2001a), damage
within Region C (of Fig. 1) remains at a relatively low level and stress concentration controls the stress field.
In fact, in the vicinity of the crack tip, the stress concentration due to the presence of a crack and the
relaxation of stresses because of damage are two competing mechanisms, and they play distinct roles in
different regions. At the moving crack tip the damage reaches its critical state and complete failure is
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Fig. 1. Schematic illustration of stress fields around the crack tip.

achieved at the corresponding material point. Correspondingly, stresses at the crack tip tend to vanish since
a fully damaged meso-element of material cannot sustain loads. With increasing distance away from the tip,
the influence of damage gradually decreases whilst that of stress increases. Eventually, stress relaxation due
to damage is suppressed by stress concentration and the influence of damage becomes a perturbation. When
the perturbation of damage to the stress field vanishes completely, the analysis encounters the limiting case
to which conventional fracture mechanics applies. (For example, see works conducted by Achenbach and
Kanninen (1978), Achenbach et al. (1981), Amazigo and Hutchinson (1977), Freund and Douglus (1982),
Leighton et al. (1987), Bose and Castaneda (1992), Ostlund and Gudmandson (1988), Gao and Nemat-
Nasser (1983), Gao et al. (1983) and Gao (1986).)

Since damage does not play a dominant role in the region concerned, the method used in Part 1 is no
longer available. Alternatively, a regular parameter perturbation technique is used to deal with the be-
haviour in the regime where damage behaves as a perturbation. Through a dimensionless parameter, the
regime where the small characteristic damage condition exists can be defined. This technique was employed
to study the problem of a static crack in a damaged creeping body (Lee et al., 1997), and now it is extended
to the current case in which the inertia effect and a more complex constitutive law are involved. It is ex-
pected that from the work presented in this Part, together with results given in Part 1, the behaviour of the
crack-tip field can be better characterised from a different approach.

As in Part 1, the virgin material is still the elastic—plastic—viscoplastic material. Damage effects are in-
corporated into the constitutive relation by virtue of the strain-equivalence theorem of damage mechanics
(Lemaitre, 1992). The kinetic evolution equation of damage is described using a quasi-brittle damage model.

All the basic equations and boundary conditions are given in Section 2. In Section 3 we normalise these
equations and establish a small dimensionless quantity that defines the small damage condition. Then we
use the regular parameter perturbation method to perform the asymptotic analysis. In Section 4 numerical
computations for the angular variations of stresses and velocities are carried out, and in Section 5 con-
cluding remarks are given.

2. Physical models and governing equations
2.1. Equation of motion
Basic governing equations are the same as those in Part 1 and they are listed below.

The Cartesian (xj,x,,x3;)-coordinate system is established with the x;-axis lying along the crack front
together with a polar coordinate system (R, 6). The origins of the coordinate systems move with the crack
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tip at velocity a(¢) in the positive x,-direction, where 7 is time. We consider a two-dimensional plane stress

problem. The non-zero stress and displacement components are labelled by oy (x1,x2,1), oxn(x1,X2,1),

o12(x1,%2, 1) (= 021 (x1,X2, 1)), uy (x1,x2,£), and up(x1, x, ¢) in the Cartesian coordinate system or, equivalently,

by o11(R,0,t), 022(R,0,1), 612(r, 0,1) (= 021 (R, 0,1)), ui (R, 0, 1), and u,(R, 0, ¢) in the polar coordinate system.
The spatial derivatives in Cartesian and polar coordinate systems are related by

0 0 sinf O
i > 1
o V%R M)
and
0 cosf 0
R — 2
oo MRTTR @)
In the moving coordinate system the material time derivative at a material point has the form
: o ., .0
@ ={5- a0z | ®)
The equation of motion is
agij
“izi .7':la2a 4
piy =5 = (i,] ) (4)

J
where p is the mass density of the material. Hereafter, the summation convention for repeated subscripts is
used unless a different specification is given.

2.2. Constitutive relationship

As in Part 1, the constitutive relation of the elastic—plastic—viscoplastic material incorporated with
damage can be described by

&y = (é?j)et‘f + (éf‘)/)eff + (é;l/P)eft‘

—(q/(1+9))
14+v 1-2v . 3 _ _ . 3 L
=z (8ij)err + 3E (Ot ) ety Sij +§BO(0)$f/N) 2(5)er (8) e +§B(0)effl(sf/)eff (1 +‘1)B/ (6)err dt ;
(5)
where
_ 0 o _df ()
()eff - 1 -D and ( )eff - dl 1 -D (6)

in which D is an isotropic damage variable bounded by 0 and 1, with D = 0 representing undamaged state
of the medium and D = 1 indicating the complete failure at a material meso-element. In Eq. (5), (&)
represents the effective elastic strain rate, (&), the effective plastic strain rate, and (&), the effective
viscoplastic strain rate; £ is Young’s modulus, v Poisson’s ratio, n the creep exponent, B a temperature-
dependent material coefficient, N the hardening exponent of plasticity, By a material constant related to the
yield stress by ka;’(l/’v )/E, with k being a material constant; ¢ is a constant for predicting primary creep
(¢ > 0), secondary creep (¢ = 0), or tertiary creep (¢ < 0); o;; denotes the stresses, s;; (= 6;; — 60;;/3) is the
derviatoric stresses and & the equivalent stress defined by

o= [sysi]”? (j=1,2,3). (7)
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2.3. Kinetic evolution equation of damage
The kinetic evolution equation of the quasi-brittle damage is taken as (Lemaitre, 1985, 1992)

le[z ,7dpP

1
_ L 2y e tg e |
& ~a2gsy |30 VE 30 = ak | s

where Sp is a material constant, and P = dP/d¢ is the equivalent plastic strain rate defined by

.odp 2,17

As demonstrated by Eq. (3). of Part 1
85 = 306(1/N>_26'S,'j
with Eq. (8) to Eq. (10) and mathematical manipulations, we have

By

D(1=D)"* = (00 + cot)a™! (k=1.2),
where
1
-1
p=s 1,
2(1+v)
= )
(B+4)
o (1 —2v)
T(B+2)

The initial condition
D=0 for ¢6=0

is used when deriving Eq. (11).
In addition, since typically N = 0.2-0.3, 8 is a positive value usually larger than unity.

2.4. Initial and boundary conditions

(10)

The initial condition is that loads are suddenly applied to the cracked specimen at the time, #. According
to the constitutive equation (5), the instantaneous response of the material is elastic. Besides, in the region
where the yielding stress is reached, the instantaneous plastic response prevails. In the vicinity of the crack

tip, it can be assumed that the full yield condition is met.

The boundary condition that we prescribed on the traction-free crack faces are o;m; =0 (i,

where n; 1s the normal vector on the crack face.

=1,2

,2),
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3. Field equations for asymptotic analysis
3.1. Dimensionless formulations

Let R* be the characteristic dimension with which an inner zone (Region A @ Region B in Fig. 1) and an
outer region (Region C of Fig. 1) can be defined around the crack tip. The damage variable D in the outer
region remains relatively small in comparison to unity. It should be pointed out that the definitions of
“inner” and “outer” regions are relative. Even the outer region is still in the vicinity of the crack tip. In the
following we shall seek the asymptotic solutions of Region C in Fig. 1, where small damage exists.

Let a* = a(¢*) be the characteristic crack velocity, where ¢* is an arbitrary given time at which the crack
velocity can be used as a scale. Then, the characteristic time for the problem is taken as 7% = R*/a*.

Let ¢* be the corresponding characteristic stress. Consider that in the near-tip field the stress ¢;; has an
asymptotic form

o; — R, (16)
where s¢ 1s a constant to be determined. Hence, ¢* can be taken as
" xR*™ or ¢ =GR, (17)

where G* is a constant. The choice of G* is not unique, but it must be characteristic of the angular dis-
tributions of stress within the scale of the characteristic time 7*. Let

_ X — R _ t - ill‘ = a(t) _ Oij _ Sij - [
i = Ha sz’ = T i = T = ij = > i = =" 1
. R* R* ! T+ “ a* a(t) a* / o ¢ o* (18a)
Then,
0 1 © 0 1 ©
6_110 o_1 9 1
a1 w M xR (18b)

All the non-dimensional physical quantities in Eq. (18a) have been scaled to the order of unity. Sub-
stituting Eqgs. (18a) and (18b) into Eqgs. (4) and (5), the equation of motion and the constitutive law can be,
respectively, reduced to the dimensionless forms

_ ol
= -1 ij
= ; 19
= ot (19)
and
—(q/(1+q))
a7/.li e/t e/ 0 p:ﬁ+17 2 vp:nflf t:n _
Pt (Si)etr + 75(0k) o0 + K (F)egp (5ij)etr (F)egr + K (O)egr (5) e (0)er dT )
J to
(i,/,k=1,2) (20)
where the dimensionless coefficients, o, )5, 75, kP and kP, are expressed by
- %2
pa
o= G R R (21)
e _ I+v

,yl G*R*S() , (22)
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1—2v
S = G'R™ 23
VZ 3E ) ( )
3 s« [ prsg] 148
KP = ZBOG [R¥0) T, (24)
3 R* 1/(1+9)
xw=53w0+®TM”ﬂGWWWmm(f> _ (25)
a*
Correspondingly, the damage evolution equation (11) is normalised to
D(1 — DY = 5(¢13® + 2,62)5 " (k=1,2), (26)
where
BO p+3
0= RO 27
5 (GR™) (7)
In the case of small damage, Eq. (26) can be reduced to
Di5<c15'2 +cza,§k)31+ﬁ. (28)

The physical quantities on the right hand side of Eq. (28) have been scaled to the order of unity except
the dimensionless coefficient, d, which is of the order of the characteristic damage. Therefore,

D<le=d<l. (29)
From Eq. (27) it can be identified that the condition 6 < 1 requires

B 1/3+p)7 1/ soD)
* 0
()" "

which, in turn, defines the small damage condition.

R >

3.2. Perturbation expansion

Since in the following discussion only the non-dimensional quantities are involved, for convenience, we
remove the bars from the barred parameters. However, they are still dimensionless.

Consider the dimensionless constant ¢ as a small quantity and follow the regular perturbation procedure,
then

.
iy =i + o) + i+ =3 5", (31)

m=0
o, = ag-)) + 502;) + (320'1(1-2) +o-= Z 5'”02;'0, (32)
m=0

D=D" 46DV + 8D 4 ... =>""D"  (i,j=1,2). (33)
m=0
Substituting Eqgs. (31)—(33) in Eqgs. (19) and (20), we can obtain a system of asymptotic equations. Indeed,
by expanding all the physical quantities in Egs. (19) and (20) in power series with respect to d, and equating
those terms with the same order of §, a series of asymptotic equations can be derived. For instance, the 6°
order asymptotic equations are



M. Lu et al. | International Journal of Solids and Structures 38 (2001) 9403-9420 9409

o'
-+(0) -1270jf
U = 34
ot 2L, (34
—(a/(1+q))
0" 0 05 om0 050) L wp( 0yl O | [0y ¥
ox = ’Vlsij +V20-kk 55/‘ +K (G ) Sij G+ K ((7 ) sij ((7 ) dr (la]7k = 172)7
J to
(35)
where
0 0 0
Sz(j) = Uz(j) —%0’,((,()5;;, (36)
_(0) 02 | (02 (0) (0) 02]"?
" = |(ay)) +(03) — 00y +3(0};) . (37)

In deriving the above equations, the condition, D(® = 0, has been used, which corresponds to the un-
damaged state of the virgin material.

Egs. (34) and (395), together with the initial and boundary conditions addressed previously, describe the
problem of a crack propagating in an elastic-power-law—plastic—viscoplastic solid without damage.

The 6' order asymptotic equations are

oo
(1) -12%4
u: = 0 y 38
! ax/ ( )
avy" dro, o dr g, o _0\”’ 0 [~ _ de©®
B, =98 P [sl(j) + sl(:].)Dm} +75 @ [a,({k) + akk)D“)} 0i; + P (o(‘))) (B+ l)s,(:j) [0(1) +a"ph &
o[ 0p0] 99”009, on )"
+ 60 |5y + 5DV | ——+ 50 — |6V +ODW| L 4 1P (50
Y Y de Yode
—(a/(1+9))
t n n—1
AL @Yo om0 (o0 200 0 (5 000)] 2 (0)
o I+q
—(2g+1)/(1+9) i
! 4 n—1
X /(6<°>)”dr / (&“”) (6(1) +6<°>D<1)) dr (i,j.k=1,2),
fo to
(39)
where
! ! !
Sz(j) = 0,(,-) - %Gl(ck)éiﬁ (40)
1
=) _ (0) 0y (1) (0) 0y (1) (0) (1)
g = 7500 [(2611 - ‘722)‘711 + (2022 — o )022 + 60, 012]7 (41)

D — {cl (5_(0))2 o (O_g))zJ (5(0)>'B+1. (42)

The third-order and even higher-order asymptotic equations can be obtained by a similar procedure.
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3.3. Field equations for the regime with small damage

3.3.1. First-order asymptotic solution
For the first-order asymptotic equations (34) and (35), according to fracture mechanics, the solution
takes the form below. That is,

i (R,0,1) = R U (0, 1) (43)
and

o (R,0,6) = R°X0)(0,4) (i,j=1,2). (44)
Here, s, U-<0)(0, t), and ZE;-))(Q, t) have to be determined.

1

Note that in terms of the differential operator defined by Eq. (3), we can see that 0/0¢ is one order lower
than —a(¢)0/0x,. Thus,

()= - () ) (45)

Using the coordinate transform Eqgs. (1) and (2) after substitution of Eqgs. (43) and (44) into Eq. (34), the
equation of motion is reduced to

—a()L U (0,0) = o 1LV E (0, 1), (46)
where Lﬁ-s‘)) (j = 1,2) is the differential operator defined by
s . .0 5 . 0
L :socosé)—sme@ and L{" :sosmﬁ—kcosew (47)

for j =1 and 2, respectively.
Expand §; as

. 1 au, au] _ 1 (s0) 7 7(0) (s0) 7 7(0) s0—1
) (axj " @x:’) ) {Li Ui (0,0 + LU0, t)}R ’ (48)

Then, elimination of ¢; in Eq. (35) with Eq. (48) after substitution of Eqgs. (43)—(45) into Eq. (35) produces,
L0 (0,0 + L7V 00(0,0) + 5a(OLLSS(0,0) + 150 £ (0, 1) | R

. p+1 CN—
= —a(e[27(0,0] 5(0,02{75" (0, )RI

, —(q/(1+q))
— n—1 . n
+x?[2%0,0]" 50,0 / 2%0.0)] ds Rr/01%9), (49)
)
where

S (0,0) = 20(0,0) — 1290, 0)5;, (50)

<(0) 0) 2 ) R ) 0) 212

0.0 = | (=00.0) + (28 0.0) - 20 0.0 2R 0,0+3(200.0) | - (1)

Following the method used in Part 1, with Eq. (49) we can determine which term(s) dominates the crack
tip behaviour in Region C (see Fig. 1). Suppose the term associated with viscoplasticity in Eq. (49) can be
ignored in comparison to that relevant to plasticity. Obviously, this case describes the problem of a crack
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propagating in an elastic-power-law—plastic solid. Equating the exponents of R on both sides of Eq. (49)
requires that

so=0. (52)

Eq. (52) leads to a trivial solution. Thus, it can be concluded that such form of the asymptotic solution
expressed by Eqs. (43) and (44) does not exist for the problem of a crack propagating in a purely elastic—
power-law—plastic material. Note that a similar conclusion was obtained for mode III dynamic crack by
means of a fully numerical verification (Gao et al., 1983). We obtained a similar result in Part 1, but what
we discussed there was a damage-related elastic—plastic solid. This conclusion obtained here is, as addressed
in Part 1, also restricted to such case in which the deformation theory is available. A further discussion
relevant to this issue is carried out in another work (Lu et al., 2001b), in which the elastic unloading and
(possible) plastic re-unloading processes are considered.

Assume now that both plasticity and viscoplasticity terms are equally important. Following the same
procedure used above, we may see that no mathematically consistent result can be obtained. Thus, in the
concerned regime (Region C) the stress and strain rate fields cannot be the mixed plastic—viscoplastic type.

To seek non-trivial solutions let us turn to the last case in which the plasticity term is removed but the
term of viscoplasticity is retained on the right hand side of Eq. (49). Then, Eq. (49) becomes

L0 (0,0) + LU (0,0) + 5L (0,0) + a0 5 (0,05, | R0
. —(q/(1+9))

— n—1 _ n
= [2%0.0] s w0 [[300.0] a R/ 1+9) (53)

to

By equating the exponents of R on both sides of Eq. (53), we have

(i)

Eqgs. (46) and (53) compose of a set of integral-differential equations. Now we seek the form of solutions:

U20,6) =490 U,

(0)
)

(0) and X(0,1) = GO)Z)(0), (55)
where 49 (¢), GO(¢), lNJI(O (0), and Z(0) are to be determined.

Substitution of Eq. (55) into Eq. (46) gives
%A% LM 0)

= - =~ ) (56)

(V) LVE5(0) (57)
©) TS AU
GO0 Loy o)

Note that the left-hand sides of Egs. (56) and (57) are functions of time ¢ while the right-hand sides are
functions of 0. Therefore, they must be identical to a constant, ki()). Hence,

aa()40 (1) = K"GO(1), (58)
and
KOL T\ (0) + LV E0(0) = o, (59)
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KOLS T (0) + L8029 (0) = 0. (60)

kfo) has to be determined from the global solution.
Substitution of Egs. (55) and (58) in Eq. (53) yields

= (n/(1+9))~1 —
A0() [2(0)(9)} RGRIC)
“@/(te) — I — - — ;
e[GO { [ 160 ey T L0 + (K7) BLUSY0) + (K7) R T 0)
(61)
= (n/(1+))~1 ~
A7) [Z(o)(g) ' 53 (0)
- @) ) e g 050 gy
KP[GO)(1)] {fr; [GO(1)] } I >U1 0) + (k{‘”) ﬂ%Lﬁ >S§g>(9)+ <k<o>) éﬁng )Zl(i)(f))
(62)
=0 (n/(1+q))-1 -
A0() [Z( )(9)} 519(0) (63)
., L@/ -1 o~ :
e[GO ]| [ [60(0)])" de} 1070y + (K7)epLsE )
where
2 2
2 a(t) a 2 a(t) a
Pr=1\— — and f, = | — - (64)
a CcT a Cy
in which

B E (=) E
T\ M CV‘\/<1+v> (1= 2) (©3)

are the velocities of the shear and dilatation waves, respectively. Here, & = (1 —v)/(1 +v).
For steady crack propagation, a(¢t) = ¢ = constant. Then, the left and right hand side of Eqgs. (61)—(63)
are functions of ¢ and 0, respectively. Thus, they must be identical to a constant. Therefore, we obtain

—(q/(1+9))
AV (1) = K x® [G<°>(t)]”{ / [G<°>(t)]”df} : (66)

fo

M2

~ -1 ~ -1 = -1
LB 0 + (1) LSO + (1) FL s - ()]

(/1)1 )

85, (0), (68)

M2

0 (n/(149)) =1~
Yo SHON)

s0) (0 -1 50) S - 50) 'y - 0
070+ (6") BLSRO) + (K7) RLTED0) = (K7) [0

50) 770) 50) 77(0) 0T “1r=0), 0] O/0+)-1~
L0 O + 2570, (0) + (6") /S0 =2(k") [2V0)] 590, (69)

where, the constant ké()), like k;o), is dependent on the global solution and can not be determined by local
analysis alone.
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Solution to Egs. (58) and (66) gives

0) 1/(1-n)
L) "+ 2 e-w)] T @£ 0)
A(O)(t) = o (O n/(n—1) (70)
ks (kﬁm;,cvp) ) (¢=0)
and
_, 1/(1—y
[(G20) "+ 20 —0)] ", (g #0)
G(t) = [0\ VoD (71)
( e ) ) (‘] =0)
k2 oak'p
where
_ _ (0) (1+9)/q
n:n—i(n 1)(1+Q)+1 and g:7(n D +9) % oar'? : (72)
q q k!

It can be seen from Egs. (56), (57) and (67) to Eq. (69) that in the elastic—viscoplastic solid (the plastic
effect has been discarded according to the above asymptotic analysis), the elastic effect has the same order as
the inertia effect, and therefore it cannot be neglected in general. However, it was shown in Part 1 that the
effective viscoplasticity controls the crack tip field. Hence, it is interesting to exclude the elasticity terms
here, and to see how the two viscoplastic stress fields vary in the regions of large and small damage, re-
spectively. For this purpose, we confine our study to the special case that ( ) ﬁT and ( ) ! B2 in Egs.
(66)—(69) are much smaller than unity so that the corresponding terms can be neglected in comparison to
the viscoplastic terms. Hence, Egs. (59), (60), and (67)-(69) become

k" sin 0{ + sin 9{ )} —cos {Eﬁ‘?(@)}' = ¢%(0), (73)
K sm@{ — cos 0[ >0 0)]/ +sind {f@(@)}/ = o(0), (74)

o]
o]

K sin0| 01 ( J (75)
] -

k( cosO|U { (76)

k%5, sin 9[5?’)(9” — ks, cos 9[5?’)(9” = o(0), (77)
where

o (0) = k550050 U (0) + 50 5in 029 (0) + 50 5in 0 Z'9(0), (78)

o0 (0) = kVs0c0s 0 U (0) + 505in 0 219(0) + 50 5in 0 Z0(0), (79)

3(0)

o(0) = socos 01 (0) - (37(0)) 5 (0). (80)

~ ~ A=l
o (0) = Ks0sin0 03" (0) - (2 (0))" 580), (81)
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o = = A=l
o2 (0) = —kVsysin 0 U (0) — kP50 c0s0 UL (0) + 2(2“” (9)) 590 (82)

in which (-)' = d(-)/d0 and 1 = n/(1 + q).
The corresponding boundary conditions at § = 0 and 0 = = are given below. By virtue of symmetry, the
following conditions hold at = 0

0V0)=0 and 29(0)=0. (83)
At 0 = 7 the free surface conditions provide
(@) =0 and ZY(n)=0. (84)

There are five unknowns, U EO), U ;0), f(ﬁ), Sgg) (= > (z(i)) and Egg), in Egs. (73)—(77), yet Egs. (83) and (84)
only supply four boundary conditions. Another boundary condition can be supplemented with the regu-
larity condition of Eq. (75) which requires that

0y (0)=0 (85)

at 0 =0.
It can be readily verified that the symmetric requirement of the velocity at 6 = 0,

71(0)

"0y =0 (86)

can be automatically satisfied.

3.3.2. Second-order asymptotic solution
For the second-order analysis, in the case that the elastic effect is ignored, we let

i1 (0,6) = AR 0" (0) (87)
and
70,0 = GV (R Z)(0). (88)

Then, substituting Eqgs. (87) and (88) in Egs. (38) and (39) and following the same procedure used in
derivation of first order approximation, we have

K sin 9[55”(9”' +5in0[Z0(0)] ~ cos0[Z00)] = o (0), (89)
KV sin g {Eg”(e)f —cos0 [Eg‘;(e)]' +sin0 [E?;(e)}' — (o), (90)
Ksin0] 01(0)] = o) (0), (o1)
K cos0] 01 (0)| = 0 (0), 92)

kél)sl cos 0 F]il) (H)J/ + kél)sl cos 0 F];l) (H)J/ + m [f(lll) (9)}, + my [5(21;(0)}/ + my [5(112) (0)} = (/)(50) (6),
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where
o\ = ks cos 0 Z]in (0) 4 51 cos 0 E(llf (0) +s1sin02')(0), (94)
o8 = kU5 cos 0 U3 (0) + 51 cos 01 (6) + s, 5in 045 (6), (93)
o) = ks, cos 0 5(1”(9) — oM, (96)
o = —kVs; sin 0 EJ;U(Q) +Q5)(0), 7

0 . 0
qoél) = 20 { cos? 0 {c(lll) + c<121> + 0(131) + hl} +sin® 0 {0(212) + cézz) + 0(232) + hz} + 20 {c(llz) + c%) + c<132) + h3} }

(98)
in which

=~ A2 o~ o e
o = (£9) [a-n3EY + 381 +42SD0),
F0\*? RO =0)= ~(0)~
ol = (3°) " - DEOE" 4 3USL 4+ 50500

~ =2 ~ ~(0)~ ~(0)~
(z(o)) (2 —1)SUTV L TO5H 4 ZZ(O)S]((Z))D“)},

[
) = % (%(0))).7%%?) 250 _ Eg)} +§ (%(0))271,
)
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m = — ( cos’ 0!} +sin® 0 ¢\? + sin 20 cﬁ)),
my = — ( cos? 0 i) + sin® 0 ¢i}) + sin 20 cg),
my = —(cos2 0 ¢\) +sin® 0c\?) + sin 20 c§32>)

with s; = so((n/(1+ q)) + B+ 3) + 1. The second-order time-dependent amplitudes 4V (¢) and GV (¢) are

G<l)(t) _ kél) [G(o)(t)](n/(l+q))+/f+3 and A(l)(l) _ oflkng(l)(l),

where kfl) and kél), like ki()) and k§0>, are two constants to be determined.
In Eqgs. (89)—(93) the two constants, k§0> and kéo), were taken as unity to simplify these expressions.
The corresponding boundary conditions are

00 =0, P00 =0, ZWm =0, IV =0, and ¢"(0)=0. (99)

4. Discussions and numeric results

As shown in Eq. (44), the radial variation of stress is primarily dependent on the first-order stress ex-
ponent sy. Since the viscoplastic creep exponent z is a positive quantity (typically, n = 4 to 6), s, is always
negative for ¢ = 0 according to Eq. (54). Also, s, remains less than zero for a primary creeping solid
provided ¢ < n — 1, which covers many engineering materials. For tertiary creeping (¢ < 0) solids, s, can be
negative or positive, depending on the value of g. When g < 0 but |¢| < 1, we have 5o < 0. And if |g| > 1
with ¢ < 0, 5o > 0. Obviously, since the analysis is based on the condition (30) that requires sy < 0, the
results obtained are not applicable to the case with ¢ < 0 while |¢| > 1.

The first-order time-dependent amplitudes, A (¢) and G (¢), are explicitly obtained from Egs. (70) and
(71). It is interesting to note that when ¢ = 0, A (¢) and G”(¢) are not functions of time but only de-
pendent on the crack tip velocity a, the material constants, and the constants, k§0> and kéo). For the case of
q # 0, it is easy to show that

{A(O)(Z), G(O)(t)} o 14/(r=a=1)
with G©(0) = 0. Take ¢ = 2, then

{49(5),G9(8)} oc £/,
Correspondingly,

81] X [2/(}173) and gij X t(nfl)/(n73).
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This differs from Andrade’s formulation (Kanninen and Popelar, 1985), ¢ o #/3, for uniaxial primary creep
with ¢ = 2, since in the present analysis the dynamic effect is included.

The constants klo), K", kY and &" remain undetermined. The computational results illustrated below

are for k") = k) = k{" = k{" = 1. It can be verified that these parameters, within a rather large range, are
not sensitive to the angular distributions of stresses and velocities.

The 8° order asymptotic equations described by Egs. (73)—(77), together with the boundary conditions
(83)—(85), pose a two-point boundary value problem. We can use either the shooting method or the re-
laxation method to solve the problem. -

Fig. 2 shows the angular variations of stresses Z )(0) (i,j = 1,2), equivalent stress D (0), and hy-
drostatic stress >\ s (H) withn/(1+¢q) =4, N =0.25 dnd v = 0.3. Comparison of this figure with Figs. 1-3
in Part 1, we can see_ that the angular variations of stresses for the two cases are qu1te dlfferent Here, the
stresses, 2| i %0)and T >(6) no longer vary monotonically with respect to 0. Also, for X by %(0), the maximum
value is not at 0 = 0 but is approximately located at n/4.

Fig. 3 gives the angular variations of velocities U (9) (i = 1,2) corresponding to the stress distributions
shown in F1g 2. It is shown that the variation of the absolute value of the velocity U (0) is not monotonic.
That is, |U ( )| first decreases and then increases with 6 reaching a mlmmum at 0 = n. The variation of

U 20)(0) is also not monotonic. In particular, the maximal value of |U (9)\ is not at 6 = n but approxi-
mately at § = 3n/4.

The angular variations of stresses and velocities for the 8' order asymptotic approximation are described
by Egs. (89)-(93). We can see that this is another two-point boundary value problem with the boundary
conditions described by Eq. (99). Since these equations are a system of non-homogeneous but linear or-
dinary differential equations, closed form analytical solutions can be obtained. However, note that these
equations contain the 6° order solution that can only be obtained numerically. Hence, only formal integrals
could be given in the final form of solutions. Thus, a numerical scheme is more practical to solve Egs. (89)-
(93).

Fig. 4 shows the angular variations of stresses > ,(11)(9) (i,j = 1,2), with the material constants being the
same as shown in Fig. 2. ‘

15[
S0) (e) -
g 50/(0)
@ 1.0
a /
G
%) 0.5 _
R
§ 0.0
. 506)
=}
> 05
< 50(0)
-1.0 :
0 2 T

0

Fig. 2. Angular variations of the stresses ff?)(ﬂ) (i,j = 1,2), equivalent stress E(O)(E)), and hydrostatic stress f,ﬂ?(@), withn/(14¢q) =
4, N =025and v=10.3.
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3.0

25+ 6(20)(6)
2.0

Angular Variations of Velocities

Fig. 3. Angular variations of velocities Uim)((i) (i = 1,2) corresponding to the stress distribution shown in Fig. 2.
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g 8 Z00)
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2 N \
5 4 5100)
S /
§ 0 @&w/
5 e
> 4] -
z 25(6)

1
®

0
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Fig. 4. Angular variations of stresses ffy(@) (i,j =1,2) with Efj”(e) and the material constants being the same as shown in Fig. 2.

Fig. 5 gives the angular variations of velocities U fl) (6) (i =1,2) corresponding to the stress distributions
shown in Fig. 4. Further discussion is also available to study the influence of material constants, such as N

and n, on the second order tip behaviour. However, since 58)(0) and U El)((?) are perturbations of Sfjo)(é))
and U EO) (0) with 0, respectively, the crack tip behaviour in the regime concerned are primarily characterised
by 25}’)(9) and U EO (6) when ¢ is far smaller than unity. Therefore, we will not give much attention to it.
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-1.0 T
0 T

0

Fig. 5. Angular variations of velocities UI(.U(H) (i = 1,2) corresponding to the stress distribution shown in Fig. 4.

In the above figures only the first and second order asymptotic solutions are presented. When the
characteristic damage is sufficiently small, say, 6 < 0.1, these results are adequate to describe the crack tip
fields. Remember that D =1 is an ideal mathematical limit corresponding to material rupture. D usually
has a value between 0.2 and 0.5 even for the most ductile metals. Therefore, 6 ~ 0.1 indicates rather severe
damage in practice. Thus, the present study is of practical importance.

In addition, all the numerical results given in this Part of the paper are based on the condition that the
elastic effect is negligible. Discussions for which the elastic effect cannot be ignored are carried out in
another study (Lu et al., 2001b).

5. Concluding remarks

In Part 1 and the present Part, comprehensive studies on two significant cases of fast fracture were
carried out with different mathematical treatments. The asymptotic solutions obtained in both studies apply
to different regions in the vicinity of the crack tip. We may again use the schematic to show the difference
(see Fig. 1). Region A is the zone where damage dominates the field. In this region stresses vary with
PN/ (44n/(149N) when » — 0. Region C is the regime where damage behaves as a perturbation. Within
this regime, stresses vary according to R~®/(1+9-0"" for R > R*, where R* is determined by the loading and
the material constants. It should be pointed out that although we do not specify an upper bound for R*, R*
must be confined to a certain scale within which the solutions expressed by Eqs. (43) and (44) are adequate
to describe the crack tip field. Obviously, in remote regions, Egs. (43) and (44) are no more valid and other
forms of solutions have to be provided. Region B in Fig. 1 is a regime where the damage is at a median level
and it may play an equivalent role with stress concentration in the stress field. Since our analyses are based
on the condition that the damage variable D is close to either unity or zero, the first and second order
asymptotic solutions we offered are not appropriate to describe the behaviour in Region B. Even if the
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stress field of Region B can be approximately described with a sufficient number of higher order asymptotic
solutions, such a methodology is usually not efficient. Alternatively, it is recommended that a fully nu-
merical treatment is needed to tackle the problem. As Region B is relatively away from the crack tip, its
geometry does not greatly influence the numerical computations.
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